Synthesis and Pharmacological Characterization of Novel, Potent and Low Clearance GLP-2 Analogues

Kazimierz Wiśniewski, Javier Sueiras-Diaz, Guangcheng Jiang, Robert Galyean, Mark Lu, Glenn Croston, Diane M. Hargrove, Steve Qi, Karthik Srinivasan, Jennifer Hartwig, Nicky Ferdyan, Halina Wiśniewska, Régent Laporte, Sudar Alagarsamy, Claudio D. Schteingart, and Pierre J-M. Rivière

Ferring Research Institute Inc., San Diego, CA, 92121, U.S.A.

Introduction

GLP-2, 1, is a 33 amino acid peptide released from intestinal L-cells following food ingestion and acts at G protein coupled GLP-2 receptors in the small intestine and colon to promote intestinal growth and increase nutrient absorption. Native hGLP-2 has a high systemic clearance (CL) due in part to proteolytic cleavage of its N-terminus by dipeptidyl peptidase IV (DPP4), limiting its potential clinical use. A DPP4 resistant analogue, teduglutide, [Gly²]hGLP-2 (2), displays similar intestinotrophic properties with an improved pharmacokinetic profile [1]. 2 is in clinical trials in patients with short bowel syndrome [2] and Crohn's disease [3]. Two other analogues with C-terminal hexalysine extensions, ZP1846 and ZP1848 are also in clinical trials for the treatment of chemotherapy-induced diarrhea and for the treatment of Crohn's disease, respectively [4].

In search of GLP-2 agonists pharmacologically superior to compounds currently in clinical development, we synthesized and biologically evaluated (*in vitro* receptor potency and selectivity, *in vivo* rat pharmacokinetics), a series of analogues based on [Gly²]hGLP-2 (1-30) peptide amides where the Met¹⁰ residue was replaced by the more stable isosteric norleucine. Based on our internal data and literature [5], positions 11 and 16 were selected for modifications. The most promising modifications were then incorporated in full length 1-33 peptides. Here we report on the discovery of potent, low-clearance and clinically relevant GLP-2 analogues.

Results and Discussion

Based on our preliminary C-terminal truncation study (results not shown here) the 1-30 peptide amide was selected for initial SAR studies. To prevent side reactions associated with aspartimide formation [5] due to the presence of the Asp³-Gly⁴ motif, peptides were synthesized by Fmoc SPPS up to position 5 and coupling the protected 1-4 fragment prepared separately on trityl resin. The introduction of single hydrophobic residues in positions 11 or 16 resulted in analogues nearly as potent *in vitro* as the natural hormone, 1. Compounds with D-aromatic amino acids in position 11 (3-5) or aromatic/aliphatic L-amino acids in position 16 (6-9) were the most potent in the series. When combined, these modifications resulted in compounds equipotent in vitro with 1 (i.e. 14). Some analogues modified in position 11 (e.g. 3, 4) showed decreased selectivity vs. hGLP-1 receptor. The selectivity was considerably improved when the L-amino acid residues in this position were replaced with their D-enantiomers (11, 12, respectively). The introduction of aromatic D-amino acid residues in position 11 yielded compounds with greatly improved pharmacokinetic profiles in rat as illustrated by their low systemic clearance (CL) values after iv administration (e.g. the D-3-Cpa¹¹, compound 4). Combination of hydrophobic modifications in positions 11 and 16 led to compounds 13-15 with

```
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 hGLP-2, 1 HADG SFSDE M NTILDNLAARDFINWLIQTKITDOH teduglutide, 2 HGDGSFSDE MNNTILDNLAARDFINWLIQTKITDOH Compounds 3-15 HGDG SFSDE NIE XaaTILDYaaLAARDFINWLIQTKNH2
Compounds 16-19 HGDGSFSDE NIE XaaTILDYaaLAARDFINWLIQTKNH2
```

Fig. 1. Sequences of GLP-2 analogues synthesized in this study.

Table 1. Pharmacological profile of GLP-2 analogues

Analogue '	Structure ^a		In vitro profile ^b			Rat PK
	Xaa ¹¹	Yaa ¹⁶	hGLP-2 EC ₅₀ (nM)	hGLP-1 EC ₅₀ (nM)	Selectivity	CL (ml/kg/min)
1	Asn	Asn	0.07	>1000 ^c	>14000	25
2	Asn	Asn	0.09	520	5700	9.9
3	D-Phe	Asn	0.09	120^d	1300	3.3
4	D-Cpa	Asn	0.09	60	660	0.51
5	D-Thi	Asn	0.10	80^d	800	1.1
6	Asn	Leu	0.10	>1000 ^c	>10000	0.84
7	Asn	Cha	0.10	>1000 ^c	>10000	0.41
8	Asn	Tyr	0.11	>1000 ^c	>9000	1.2
9	Asn	Phe	0.14	>1000°	>7100	NT^e
10	Phe	Asn	0.15	16	100	NT^e
11	Cpa	Asn	0.16	8.9	55	NT^e
12	D-3-Cpa	Asn	0.11	45	400	0.32
13	D-Phe	Phe	0.09	>1000 ^c	>11000	0.30
14	D-Phe	Tyr	0.07	90^d	120	0.48
15	D-Phe	Leu	0.08	>1000 ^c	>11000	0.30
16	D-Phe	Leu	0.03	>1000 ^c	>33000	0.27
17	D-Phe	Leu	0.03	>1000 ^c	>33000	0.22
18	D-Phe	Phe	0.06	>1000 ^c	>16000	0.24
19	D-Phe	Phe	0.06	>1000 ^c	>16000	0.15

^a1 has Ala and 2-19 have Gly in pos. 2. 1, 2 have Met and 3-19 have Nle in pos. 10. R is OH for 1, 2, 17 and 19 and NH_2 for all other compounds; ^bcell based functional assays of receptor activation; ^cNo agonism up to the highest concentration tested, 1000 nM; ^d Partial agonist; ^eNot tested

further reduced CL values in rat. The full length peptides 16-19 were equipotent or more potent in vitro than the parent hormone (analogues 16, 17 were 2-fold more potent than 1). CL values were additionally decreased in peptides 16-19 as compared to shortened analogues 13-15. The C-terminal acid peptides 17 and 19 had pharmacological profiles similar to their corresponding primary amide compounds 16 and 18.

A series of potent and selective GLP-2 analogues modified in position 11 and/or 16 with pharmacokinetic characteristics superior to that of native hormone and/or teduglutide have been discovered. A member of this series, compound 16 (FE 203799), is a potent, selective and low CL analogue that has been selected for clinical development as a potential treatment of gastrointestinal diseases and disorders. More comprehensive accounts on the pharmacological profile of FE 203799 and related compounds will be presented elsewhere.

References

- 1. Drucker, D.J., DeForest, L., Brubaker, P.L. Am. J. Physiol. 273, G1252-G1262 (1997).
- 2. Jeppesen, P.B., et al. Gut. 60, 902-914 (2011).
- 3. Buchman, A.L., et al. Inflamm. Bowel. Dis. 16, 962-973 (2010).
- 4. http://www.zealandpharma.com.
- 5. DaCambra, M.P., et al. Biochemistry 39, 8888-8894 (2000).