Synthesis and Pharmacological Characterization

of Novel, Potent and Low Clearance GLP-2 Analogues

Kazimierz Wiśniewski, Javier Sueiras-Diaz, Guangcheng Jiang, Robert Galyean, Mark Lu, Glenn Croston, Diane M. Hargrove, Steve Qi, Karthik Srinivasan, Jennifer Hartwig, Nicky Ferdyan, Halina Wiśniewska, Régent Laporte, Sudar Alagarsamy, Claudio D. Schteingart and Pierre J-M. Rivière

Ferring Research Institute Inc., 4245 Sorrento Valley Boulevard, San Diego, CA 92121, USA

Introduction

GLP-2, ${f 1}$, is a 33 amino acid peptide released from intestinal L-cells following food ingestion and acts at G

protein coupled GLP-2 receptors in the small intestine and colon to promote intestinal growth and increase

nutrient absorption. Native hGLP-2 has a high systemic clearance (CL) due in part to proteolytic cleavage of

its N-terminus by dipeptidyl peptidase IV (DPP4), limiting its potential clinical use. A DPP4 resistant analogue,

teduglutide, [Gly²]hGLP-2 (2), displays similar intestinotrophic properties with an improved pharmacokinetic

profile. 2 has been shown to be effective in patients with short bowel syndrome and Crohn's disease. Two

other analogues with C-terminal hexalysine extensions, ZP1846 and ZP1848 are also in clinical trials for the

In search of GLP-2 agonists pharmacologically superior to compounds currently in clinical development, we

synthesized and biologically evaluated (in vitro receptor potency and selectivity, in vivo rat

pharmacokinetics), a series of analogues based on [Gly2]hGLP-2 (1-30) peptide amides where the Met10

residue was replaced by the more stable isosteric norleucine. Based on our internal data and literature,⁵

positions 11 and 16 were selected for modifications. The most promising modifications were then

incorporated in full length 1-33 peptides. Here we report on the discovery of potent, low-clearance and

treatment of chemotherapy-induced diarrhea and for the treatment of Crohn's disease, respectively.4

clinically relevant GLP-2 analogues.

Sequences of hGLP-2 analogues

hGLP-2, 1 HADGSFSDEM N TILD N LAARDFINWLIQTK I TDOH rGLP-2 HADGSFSDEM N TILD N LATRDFINWLIQTK I TDOH teduglutide, 2 HGDGSFSDEM N TILD N LAARDFINWLIQTKITDOH HGEGSFSSEL S TILD A LAARDFIAWLIATK I TDKKKKKKNH2

ZP1848 HGEGTFSSEL A TILD A LAARDFIAWLIATKI TDKKKKKK NH2 Compounds 3-29 HGDGSFSDENIe Xaa TILDYaa LAARDFINWLIQTKNH2 Compounds 30-35 HGDGSFSDENIe Xaa TILDYaa LAARDFINWLIQTKITD R3

Differences with native hGLP-2 highlighted in blue

Structure

Structure and pharmacological profile of GLP-2 analogues

Structure and pharmacological profile of GLP-2 analogues													
	Structure ^a					Analytical data	1	In vitro potency (EC50, nM) at					Ī
Analogue					HPLC	M+H	M+H	receptor		Potency ratio at hGLP-2R vs.	Selectivity ^b	Rat CL	Ш
3	Xaa ¹¹	Yaa ¹⁶	n	R ³	purity	calculated	observed	hGLP-2	hGLP-1	compound 1	hGLP-1/hGLP-2	(ml/kg/min)	Ш
1	Asn	Asn	1	-OH	96.2	3764.8	3764.9	0.07	520	1.0	7400	25	Ш
2	Asn	Asn	1	-NH ₂	94.0	3750.8	3750.8	0.09	>1000 ^c	0.78	>11000	9.9	Ш
3	Phe	Asn	0	-NH ₂	100.0	3435.7	3435.6	0.15	16	0.47	100	NT ^d	Ш
4	Сра	Asn	0	-NH ₂	99.7	3469.7	3469.8	0.16	8.9	0.44	55	NT ^d	Ш
5	His	Asn	0	-NH ₂	98.3	3425.7	3426.0	0.44	300 ^e	0.16	680	NT ^d	Ш
6	Cha	Asn	0	-NH ₂	99.7	3441.8	3442.0	0.51	8.9	0.14	17	NT ^d	Ш
7	Leu	Asn	0	-NH ₂	100.0	3401.7	3401.8	0.15	180 ^e	0.47	1200	2.8	Ш
8	D-Leu	Asn	0	-NH ₂	100.0	3401.7	3401.8	0.31	>1000 ^c	0.23	>3200	3.3	Ш
9	D-Phe	Asn	0	-NH ₂	100.0	3435.7	3435.8	0.09	120 ^e	0.78	1300	1.2	Ш
10	D-Cpa	Asn	0	-NH ₂	98.4	3469.7	3469.8	0.09	60	0.78	660	0.51	П
11	D-3-Cpa	Asn	0	-NH ₂	96.0	3469.7	3470.2	0.11	45	0.64	400	0.32	
12	D-Thi	Asn	0	-NH ₂	99.1	3441.7	3442.0	0.10	80 <i>e</i>	0.7	800	1.1	
13	D-Tyr	Asn	0	-NH ₂	99.1	3451.7	3452.2	0.18	32 ^e	0.39	170	4.9	
14	D-His	Asn	0	-NH ₂	97.8	3425.7	3426.0	0.20	>1000 ^c	0.35	>5000	NT ^d	П
15	Asn	Leu	0	-NH ₂	98.8	3401.7	3401.8	0.10	>1000 ^c	0.7	>10000	0.84	П
16	Asn	Cha	0	-NH ₂	99.9	3441.8	3442.0	0.10	>1000 ^c	0.7	>10000	0.41	П
17	Asn	Tyr	0	-NH ₂	98.1	3451.7	3452.0	0.11	>1000 ^c	0.64	>9000	1.2	וַן
18	Asn	Aph	0	-NH ₂	98.0	3450.7	3451.0	0.13	>1000 ^c	0.54	>7600	1.9	
19	Asn	Phe	0	-NH ₂	98.7	3435.7	3436.2	0.14	>1000 ^c	0.5	>7100	NT ^d	
20	Asn	Trp	0	-NH ₂	98.6	3474.7	3475.0	0.15	>1000 ^c	0.47	>6600	0.50	
21	Asn	Thi	0	-NH ₂	98.4	3441.7	3442.0	0.20	>1000 ^c	0.35	>5000	NT ^d	
22	Asn	Сра	0	-NH ₂	100.0	3469.7	3469.8	0.22	>1000 ^c	0.32	>4500	NT ^d	
23	Asn	His	0	-NH ₂	97.4	3425.7	3426.0	0.42	>1000 ^c	0.17	>2300	NT ^d	
24	D-Phe	Tyr	0	-NH ₂	99.5	3484.8	3485.2	0.07	90 <i>e</i>	1.0	1200	0.48	
25	D-Phe	Leu	0	-NH ₂	98.8	3434.8	3435.2	0.08	>1000 ^c	0.88	>12000	0.37	
26	D-Phe	Phe	0	-NH ₂	100.0	3468.8	3469.2	0.09	>1000 ^c	0.78	>11000	0.30	l
27	D-Thi	Tyr	0	-NH ₂	99.8	3490.7	3491.0	0.07	68 <i>e</i>	1.0	970	0.52	
28	D-Thi	Leu	0	-NH ₂	99.8	3440.7	3441.2	0.08	>1000 ^c	0.88	>12000	0.33	ľ
29	D-Thi	Phe	0	-NH ₂	99.3	3474.7	3475.2	0.08	>1000 ^c	0.88	>12000	0.26	
30	D-Phe	Leu	1	-OH	95.6	3764.9	3764.4	0.03	>1000 ^c	2.3	>33000	0.22	
31	D-Phe	Leu	1	-NH ₂	96.1	3763.9	3764.2	0.03	>1000 ^c	2.3	>33000	0.27	
32	D-Phe	Phe	1	-OH	96.3	3798.9	3798.6	0.06	>1000 ^c	1.2	>16000	0.15	
33	D-Phe	Phe	1	-NH ₂	90.2	3797.9	3797.4	0.06	>1000 ^c	1.2	>16000	0.24	
34	D-Thi	Phe	1	-NH ₂	87.5	3803.9	3803.9	0.07	>1000 ^c	1.0	>14000	0.15	
35	D-3-Cpa	Phe	1	-NH ₂	92.8	3831.9	3831.3	0.13	>1000 ^c	0.54	>7600	0.12	

^a Compound **1** (hGLP-2) has Ala in position 2 and Met in position 10. Compound **2** has Met in position 2. bRatio EC₅₀(hGLP-1R)/EC₅₀(hGLP-2R); c No significant agonism at the highest concentration tested – 1000 nM; ^d NT – not tested; ^e partial agonist, efficacy <70%

Results and discussion

- Based on our preliminary C-terminal truncation study (results not shown here) the 1-30 peptide amide was selected for initial SAR studies.
- To prevent side reactions associated with aspartimide formation due to the presence of the Asp³-Gly⁴ motif, peptides were synthesized by assembling sequences up to position 5 and coupling the 1-4 fragment prepared separately on trityl resin.
- The introduction of single hydrophobic residues in positions 11 or 16 resulted in analogues nearly as potent in vitro as the natural hormone, 1. Compounds with D-aromatic amino acids in position 11 (9, D-Phe¹¹; 10, D-Cpa¹¹; 12, D-Thi¹¹) or aromatic/aliphatic L-amino acids in position 16 (**15**, Leu¹⁶; **16**, Cha¹⁶; **17**, Tyr¹⁶; **19**, Phe¹⁶) were the most potent in the series.
- When combined, these modifications resulted in compounds equipotent in vitro with 1 (i.e. 24, 27).
- Some analogues modified in position 11 (e.g. 3, 4, 6) showed decreased selectivity vs hGLP-1 receptor. The selectivity was considerably improved when the L-amino acid residues in this position were replaced with their Denantiomers.
- The introduction of aromatic D-amino acid residues in position 11 yielded compounds with greatly improved pharmacokinetic profiles in rat as illustrated by their low systemic clearance (CL) values after iv administration (i.e. the 3-Cpa 11 compound **11**).
- Combination of hydrophobic modifications in positions 11 and 16 led to compounds 24-29 with low CL values in rat.
- The full length peptides **30-35** were equipotent or more potent *in vitro* than the parent hormone (i.e. analogues **30**, **31** were 2-fold more potent than **1**)
- CL values trended lower in peptides **30-35** as compared to shortened analogues **24-29**.
- The C-terminal acid peptides 30 and 32 had similar pharmacological profiles as their corresponding primary amide compounds **31** and **33**.

Conclusions

- A series of potent and selective GLP-2 analogues modified in position 11 and/or 16 with pharmacokinetic characteristics superior to that of native hormone and/or teduglutide have been discovered.
- A member of this series, compound **31** (FE 203799), is a potent, selective and low CL analogue that has been selected for clinical development as a potential treatment of gastrointestinal diseases and disorders.
- More comprehensive accounts on pharmacological⁷ and pharmacokinetic⁸ profiles of FE 203799 have been presented elsewhere.

References

- 1. Drucker, D. J.; DeForest, L.; Brubaker, P. L. Am. J. Physiol. 1997, 273, G1252-1262.
- 2. Jeppesen, P. B.; Gilroy, R.; Pertkiewicz, M.; Allard, J. P.; Messing, B.; O'Keefe, S. J. Gut 2011, 60, 902-914.
- 3. Buchman, A. L.; Katz, S.; Fang, J. C.; Bernstein, C. N.; Abou-Assi, S. G. Inflamm. Bowel. Dis. 2010, 16, 962-973. 4. DaCambra, M. P.; Yusta, B.; Sumner-Smith, M.; Crivici, A.; Drucker, D. J.; Brubaker, P. L. Biochemistry 2000, 39, 8888-8894.
- 5. http://www.zealandpharma.com
- 6. Mergler, M.; Dick, F.; Sax, B.; Weiler, P.; Vorherr, T. J. Pept. Sci. 2003, 9, 36-46.
- 7. Hargrove D. M.; Alagarsamy, S.; Qi, Srinivasan, K.; Croston, G.; Laporte, R.; Sueiras-Diaz, J.; Wiśniewski, K.; Hartwig, J.; Wiśniewska, H.; Lu, M.; Posch, A. P.; Schteingart, C. D.; Rivière P. J-M. Poster presentation Sa1376, Digestive Disease Week 2011, Chicago, IL, USA, May 7-10, 2011
- 8. Srinivasan, K.; Qi, S.; Hargrove, D. M.; Hartwig, J.; Ferdyan, N.; Alagarsamy, S.; Croston, G.; Laporte, R.; Sueiras-Diaz, J.; Wiśniewski, K.; Wiśniewska, H.; Lu, M.; Posch, A. P.; Schteingart, C. D.; Rivière P. J-M. Poster presentation W3096, AAPS National Biotech Conference, San Francisco, CA, USA, May 16-18, 2011.

Experimental

General

Amino acid derivatives and resins were purchased from the following suppliers: EMD Biosciences (Novabiochem), Bachem and Peptide International. Other chemicals and solvents were purchased from Sigma-Aldrich, Fisher Scientific and VWR.

Peptide synthesis.

The C-terminal fragments up to position 5 were assembled by Fmoc chemistry using ABI 433A automatic peptide synthesizer on a 0.25 mmol or 0.5 mmol or reagents were employed. Rink amide resin (for primary peptide amides, 2-29, 31, 33-35) or Fmoc-Asp(OtBu)-O-NovaSyn TGT resin, cat# 856126 (for peptide acids, 1, 30, 32) were used. The 1-4 fragment was subsequently added by a manual, DIC/HOBt-mediated coupling of tetrapeptide Boc-His(Trt)-Gly-Asp(OtBu)-Gly-OH to the resin-bound peptides. To prepare hGLP-2 ($\mathbf{1}$), tetrapeptide Boc-His(Trt)-Ala-Asp(OtBu)-Gly-OH was used to introduce the N-terminal fragment.

Cleavage, cyclization and purification

All peptides were cleaved with concomitant side chain protecting groups removal using the TFA/H2O/TIS 90/6/4 (v/v/v) cocktail. For methionine-containing reference peptides 1 and 2, reagent K (TFA/thioanisole/EDT/H2O 88/5/5/2 (v/v/v/v)) was used instead. The peptides were purified by preparative HPLC in triethylammonium phosphate buffer at pH = 2.3 and desalted in a TFA buffer. When necessary, extra purification steps in triethylammonium perchlorate buffer at pH = 7.0 and/or in triethylammonium perchlorate buffer at pH = 7.0 and/or in triethylammonium perchlorate buffer at pH = 2.3 were added prior to the desalting. The fractions with purity exceeding 97% were pooled and lyophilized.

In vitro receptor assays In vitro receptor assays were performed in human embryonic kidney 293 (HEK-293) cells expressing the human GLP-2 assays were conducted with transiently transfected cells, hGLP-1 assays were conducted using a stable cell line. To monitor the agonist-induced activity, expression of the luciferase gene was determined after 5-hour incubation with various concentrations of test compounds. Compound potency was expressed as the EC50, the concentration that produced a half maximal response relative to the respective endogenous ligand, calculated by four parameter non-linear regression analysis of concentration-response curves using ActivityBase™ software. The efficacy was expressed in relative terms as % maximal possible effect (MPE) calculated based on the maximal response of the reference agonist included in each assay.

Rat Pharmacokinetics and Bioanalysis

Catheterized male Sprague Dawley rats (~0.3 kg) were used for the PK studies. The jugular vein was used for blood sampling. Dosing solution of 1 was prepared in 25 mM phosphate buffer, pH 7.4 with no NaCl and dosing solution of 1 was prepared in 25 mM phosphate buffer, pH 7.4 isotonic with NaCl. Blood was collected at multiple time points up to 5 h post-injection. PK parameters were determined by non-compartmental analysis using PK solutions and WinNonLin software.

The blood samples collected were processed to plasma by centrifugation, then flash frozen and stored at -20°C. Bioanalysis was conducted using protein precipitation followed by electrospray ionization LC/MS/MS methods (AB Sciex API4000 MS, Shimadzu Prominence HPLC (CBM-20A) and SIL-20ACHT Autosampler). The gradient HPLC method involved reverse-phase column (Phenomenex Jupiter 00B-4053-B0, 50x2.0 mm, 5um, 300Å, C18) and 1.0% formic acid in water, B: 0.01% TFA and 1.0% formic acid in 70% CH3CN) at a flow rate of 0.5 ml/min.